

Registration No.

-Technical Report-

U.S. Army Tank Automotive Research,
Development, and Engineering Center
Detroit Arsenal
Warren, Michigan 48397-5000

“Fuel Efficient Demonstrator (FED) Alpha In-dash Vehicle
Display Transition to Apple iPad for Reduced SWAP-C”

OCT 2012

UNCLASSIFIED

UNCLASSIFIED

Technical Information Center (TIC) Report Cover Page

DISTRIBUTION STATEMENT A: Approved for public release; distribution is
unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
17-10-2012

2. REPORT TYPE
Technical Report

3. DATES COVERED (From - To)
 June 2012 – December 2010

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

Fuel Efficient Demonstrator (FED) Alpha In-dash Vehicle Display
Transition to Apple iPad for Reduced SWAP-C

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

Richard Chase

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

U.S. Army TARDEC - VEA
6501 E 11 Mile Road
Warren MI 48397
MS224

23453

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

U.S. Army TARDEC
6501 E 11 Mile Road 11. SPONSOR/MONITOR’S REPORT
Warren MI 48397 NUMBER(S)
 23453

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This paper discusses the transition of the Fuel Efficient Demonstrator In-dash Vehicle
Display (FED IDVD) from a ruggedized computer to an Apple iPad. The hardware differences
between the original IDVD used in the vehicle and the iPad are discussed, as well as the
differences in developing the software. A high level overview of the development of the iPad
application is given, along with some code examples and comparisons with the original code as
well as code examples compared to the original code. The reduced size, weight, power and cost
(SWAP-C) are examined, and lessons learned from this project are discussed.
15. SUBJECT TERMS
Fuel Efficient Demonstrator (FED), Vehicle Touchscreen Display

16. SECURITY CLASSIFICATION OF: UNCLAS

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Richard Chase

a. REPORT
UNCLAS

b. ABSTRACT
UNCLAS

c. THIS PAGE
UNCLAS

Public
Release

7

19b. TELEPHONE NUMBER (include area
code)
586-282-4889
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

1

UNCLASSIFIED

Fuel Efficient Demonstrator (FED) Alpha In-dash Vehicle Display

Transition to Apple iPad for Reduced SWAP-C

Abstract
This paper discusses the transition of the Fuel Efficient Demonstrator In-dash Vehicle Display (FED IDVD)

from a ruggedized computer to an Apple iPad. The hardware differences between the original IDVD

used in the vehicle and the iPad are discussed, as well as the differences in developing the software. A

high level overview of the development of the iPad application is given, along with some code examples

and comparisons with the original code as well as code examples compared to the original code. The

reduced size, weight, power and cost (SWAP-C) are examined, and lessons learned from this project are

discussed.

Introduction
The IDVD is a ruggedized computer used as a user interface for the FED Alpha vehicle [1]. The computer

runs Windows XP and can therefore host a variety of applications. For this demonstrator vehicle, the

IDVD acted as a multi-function touch screen similar to those found in commercial automotive

applications. The IDVD development adopted design approaches from the automotive industry, and

custom graphics were designed that can be embedded into other software and easily utilized on a

variety of vehicles. Initially, the software development was done in LabVIEW, a system design software

normally used in a laboratory environment. Eventually the software designed in LabVIEW was compiled

to run on the IDVD by installing a LabVIEW real time kernel on the Windows XP operating system.

Towards the end of the original IDVD project, Apple introduced the iPad, a tablet PC, and an experiment

was done to test the feasibility of using an iPad in a military vehicle. The wireless capabilities of the iPad

allowed it to function as in In-dash / Out-of-dash Vehicle Display (IODVD). The code and graphics work

originally done in LabVIEW was ported to the iPad and tested. The following is a comparison of each

method of developing a GUI in the respective hardware environment.

Figure 1: Exterior of the FED Alpha (left), and the In-dash Vehicle Display (right)

UNCLASSIFIED

2

UNCLASSIFIED

Figure 2: Screenshot of Fuel Economy Screen of IDVD GUI

VarTech Ruggedized Computer Features
The IDVD consisted of a VarTech brand ruggedized computer within a NEMA enclosure (VARTEC

VTPC104PHB). Optional additions to this system are a CAN bus, keyboard and mouse interface, USB,

RS232, etc. Many of the interfaces that come on the standard model were not used or needed in the

final product. Furthermore, the particular unit used did not have a CAN bus directly on it, and a USB to

CAN converter had to be used. The unit consumes 60 Watts regardless of the CPU usage, and it also has

a long boot up time of approximately four minutes. The screen is also a resistive touch screen, and it

does have an on screen keyboard and mouse. However, a physical keyboard mouse was attached due

to the screen’s slow and cumbersome operation. At the time, a resistive touch screen was chosen as

many war-fighters wear gloves, and gloves inhibit the operation of capacitive touch screens.

The system ran the Windows XP operating system, which allows many different types of applications to

be run on the system. LabVIEW was used as a test bench to debug the system on, and the front end GUI

was made from the existing LabVIEW modules. However, the LabVIEW development suite has limited

GUI capabilities. Coding in the LabVIEW environment is done graphically, and although there are some

elements of GUI objects that can be controlled, there is not an extensive list of elements. For example,

one may be able to control the background color of a window, but not the window border shape and

size. The library must be built into LabVIEW natively, which means that the developer can only control

the functions that are already built into the system. If the developer wishes to control a GUI element

that does not have a native function assigned to it, a workaround must be created which adds

development time and normally makes the program run slower. However, since the operating system is

Windows XP, many different types of development environments can be used to create GUIs that will

run on the IDVD. LabVIEW was chosen as the method for creating the GUI because that backend was

UNCLASSIFIED

3

UNCLASSIFIED

developed in the lab and had undergone significant testing. Although the GUI ran slow in the LabVIEW

environment, it ran smoothly when compiled.

Figure 3: Multiple angle view of VarTech ruggedized computer

iPad Features
The iPad was released towards the end of the IDVD development, and it was decided to experiment with

creating the FED GUI on it. The iPad requires significantly less power and also had wireless capability,

allowing its use inside and outside of the vehicle. A proprietary port on the bottom of the iPad provides

the capability to plug directly into the CAN bus through a middleware bridge. It can also be charged and

powered directly from the middleware bridge. The iPad uses a capacitive touch screen which is much

more responsive than a resistive touch screen, although the finger tips of a war-fighter’s gloves must be

modified in order to interact with a capacitive touch screen. Another key advantage of using an iPad is

that the development suite, called Xcode, is specifically designed for GUI creation, and the integrated

libraries make use of the native hardware which means that programs run extremely fast. On top of

that, if the developer needs to manipulate a GUI widget in a manner that is not specifically designed into

the native libraries, new functions can be easily added with a few lines of code resulting in highly

customizable graphic displays.

Figure 4: Side view of Apple iPad

UNCLASSIFIED

4

UNCLASSIFIED

Comparison of Coding Methods
GUIs for iOS are written in Objective C, a modified form of C++. There is a small learning curve when

beginning to use Objective C for those coders that have a C++ background, but the language is fairly

intuitive and it allows for coders to understand other coders work much easier than C++. GUIs are

written mainly in code as opposed to the graphical coding environment of LabVIEW. Libraries are also

available to control almost every aspect of a widget, which means that a GUI’s look is highly

customizable. For quick start up of an application there is also an application called Interface builder

that can be used alongside Xcode. Interface builder allows the developer to graphically create a simple

GUI window without coding. These windows can then be called into the parent window, and opened

and closed with function calls. The difference between this method and LabVIEW is that interface

builder allows the coder to access the GUI at a text based code level as well: LabVIEW does not. One

drawback of using Xcode and objective C is that iOS devices only run signed code, which means that

application must be provisioned and licensed to run on an iOS device. This can be completed by either

uploading the app to Apple store and making it available for download, or by obtaining a developer’s

license which allows applications to be provisioned upon distribution.

Specific Examples of Coding Differences

Let us look at the specific example of defining a button state, and its coinciding images. For this

example, a button will have three states – on, off, depressed. The depressed state of the button is when

a finger is actually touching the button. Let us compare the two methods, first in Xcode for iOS, second

for LabVIEW.

In Xcode there are 2 ways to define characteristics of the button. First is through coding. The button

class has many functions such as setting the button type, title, color for each individual state, title for

each individual state, etc. These specific calls can be looked at in the documentation folder of Xcode.

This document is meant to be a high level overview of the two processes.

The second method is through the Xcode development environment. There is a properties window in

interface builder that allows you to control most aspects of a button at each particular state: title, font,

color, shadows, etc.

UNCLASSIFIED

5

UNCLASSIFIED

Figure 5: Screenshot of property editor in Xcode

In LabVIEW, it is difficult to define a button that has different images for an off and on position, but it is

possible. Figure 4shows the base process for customizing a button in LabVIEW. First the coder must go

to an advanced customization pane; second he must select the button mode and then edit function.

Once that is done, they must select the picture to import. LabVIEW deals in predetermined

images?absolute pictures, meaning that the picture must be designed beforehand, and LabVIEW simply

either shows or hides the photo. To change the button image for a different state, this process must be

repeated again. This works for both the ‘on’ and ‘off’ button state, but it is not possible to select the

‘depressed’ button state, meaning that the button will revert back to its default image when it is being

pressed . This is undesirable when developing a sleek GUI application.

Figure 6: Screen shot of property editor process in LabVIEW

UNCLASSIFIED

6

UNCLASSIFIED

The interface from the iOS version of the IDVD to vehicle’s CAN bus was done through the use of a

simple wireless to CAN bridge. The bridge was able to read CAN bus packets without interfering with

vehicle’s CAN bus, by simply reading in messages and not transmitting packets. . The unit does have the

ability to transmit CAN messages on the bus, but this feature was turned off for safety reasons. The

vehicle had multiple CAN busses, and the one that the iPad was attached to also had the engine,

transmission, and other critical components on it.

Comparison of VarTech Ruggedized Computer and iPad

Table 1: Comparison table of iPad and VarTech performance

 VarTech iPad v1 SWAP-C

Sunlight readable Yes Hard to Read Loss in Function
Input voltage range 9 to 36V Rechargeable Battery Power

(10 hrs, 1 month in standby)
Gain in Function

Resolution 1024 x 768 1024 x 768 Even
NEMA Enclosure NEMA 4 (IP65) No Loss in function

Operating System Windows XP iOS 5.1.1
Boot up time 4 Minutes Instantaneous from Standby

Mode
Gain in

Performance
Power consumption 60 Watts Continuous 4.2 Watts @ Full CPU load >93% reduction

Temp range -20 to 70 C 0 to 35 C 55 Degree loss
Dimensions 20 x 17 x10 in 9.56×7.47×0.528 in 98% Reduction

Weight 13 lbs 1.6 lbs 88% Reduction
Processor T4500 2.30 GHz 1 GHz ARM Cortex-A8 Loss (Acceptable)
Memory 2 GB 256 MB Loss (Acceptable)
Sensors None Accelerometer, Ambient

Light, Magnetometer, GPS
Gain in

functionality
Network 10/100BaseT Wireless (802.11 a/b/g/n),

Bluetooth, Cellular
Loss / Gain in

functionality (Even)
Display Size 10.4 in 9.7 in 14% Loss in Area

Touch Screen Resistive Capacitive Even
Cost $5,300 $400 93% Reduction
I/O Varies- CAN, USB, etc Proprietary I/O connector Even

The iPad is not a ruggedized piece of equipment and there is some functionality loss associated with

that. The display is not easily readable in the sunlight, it does not have a weatherproof NEMA enclosure,

and its operating temperature is not suitable for military environments yet. However, with some

manufacturing adjustments, the device could be built to withstand harsher environments. There is also

a 14% loss in screen size.

UNCLASSIFIED

7

UNCLASSIFIED

Some features between the two come out even. For example, the screen resolutions are the same. It is

important to note that new versions of the iPad released during the writing of this document have much

higher screen resolutions. The processor and memory of the iPad are less powerful than the VarTech

PC, but with the iOS code taking advantage of specific hardware, similar performance was realized with

decreased computing power. Another even trade off is the I/O and network connections. While the iPad

does not have a physical connection for network ports, it has wireless capable. Also, the full sized

computer can have CAN and USB connectors built into it with additional cost, the iPad has a proprietary

serial connection that can attach to an add on board which can easily be developed.

In terms of SWAP-C the iPad outperforms the built in computer easily. It has a 10hr battery lifetime and

can boot instantaneously from standby mode. It also has a 93% reduction in power, 98% reduction in

volume, 88% reduction in weight, and a 93% reduction in cost.

Lessons Learned and Conclusion
Each version of the IDVD had its pros and cons associated with it. There was upfront design time

associate with each, but both were equal. LabVIEW and the iOS platform each have graphical interfaces

to build basic items which allow them to have a working baseline up and running quickly. However, with

LabVIEW, there was a significant number of workarounds that had to be developed to customize the

interface to make it look sleek, whereas iOS and Xcode has the ability to customize virtually every aspect

of the interface. The capacitive touch screen on the iPad was much more responsive than the resistive

touch screen on the VarTech ruggedized computer. With ruggedization, the iPad could outperform any

full size ruggedized computer that is used for an IDVD.

Another issue to consider is the licensing agreement between the government and Apple required in

order to provision programs to the iPad. Both entities have their own set of bureaucratic processes, and

navigating through the legal processes of each resulted in a 6 month long acquisition for a $300

purchase. We were able to develop code during the acquisition process so no time was lost. Now that

the acquisition is finalized, TARDEC now has a license to provision apps for in-house applications such as

demonstration vehicles, info apps, and testing in labs.

References

[1] R. Chase, “Development of the In-Dash Vehicle Display for the Fuel Efficient Demonstrator (FED)

Alpha Vehicle,” U.S. Army TARDEC, Tech Rep. 2012

